Anteriormente corría por el centro del valle, pero en las fuertes crecientes del año 1871 cambió de curso labrando uno nuevo por el extremo occidental del valle. Al desembocar al río Piura se tiende a unir con el río Las Damas, debido a que conforman un solo Valle que comparte las aguas para riego. 1034.70 SY = Sc = NY * D LY = 237 * 400 = 90.3m/Km. Para evitar este inconveniente se puede desarrollar un segundo método, utilizando el perfil longitudinal del curso y considerando una pendiente (S2) equivalente a la pendiente de línea recta trazada desde el punto de desagüe sobre el perfil longitudinal del río. SET. Manejo de datos hídricos (descargas, precipitaciones) para evaluar parámetros de diseño, para la construcción de obras de irrigación como presas, reservorios, canales, etc. 139.76 NASH (m/Km.) 2. Ronald F. Clayton El problema es similar al del análisis de las alturas de lluvias caídas en la cuenca, y su solución racional requiere también de la estadística. LA ALTITUD ALTITUD AREA 0 650,30 0,00 100.00 200 624,29 5,56 96.00 400 516,99 11,11 79,50 800 401,56 22,22 61,75 1120 325,15 31,11 50.00 1200 308,89 33,33 47,50 1600 237,36 44,44 36,50 1800 212,97 50,00 32,75 2000 190,21 55,56 29,25 2400 120,31 66,67 18,50 2800 65,03 77,78 10.00 3200 1,63 88,89 0,25 3600 0,00 100,00 0.00 ALTITUD (m.s.n.m.) La cuenca del río Piura tiene un área aproximada de 10 295 Km 2, que representa casi el 0.78 % de 1a superficie total del territorio nacional y entre ella y sus subcuencas suman un total de 12216 Km2 El río Piura nace a 3,600 m.s.n.m. 5.4.1.3.- CAUDALES MEDIOS ANUALES O MÓDULOS Se calculan tomando la media aritmética de los caudales correspondientes a los 12 meses del año; como consecuencia nos da una idea de la variación a nivel promedio de los caudales que se presentan en cada año. Los elementos para graficar la curva se presenta en el CUADRO N834, en el se observa que se ha considerado el registro histórico común para todos correspondientes a 15 años (1,972 - 1,986). ; tiene un recorrido de Norte a Sur-Este hasta su confluencia son el río corral del Medio, desembocando este en el río Piura a la altura del Pueblo Nuevo. INTERSECCION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 COORDENADAS X Y (km.) 3600 – 3400 3400 - 3200 3200 - 3000 3000 - 2800 2800 - 2600 2600 - 2400 2400 - 2200 2200 - 2000 2000 - 1800 1800 - 1600 1600 - 1400 1400 - 1200 1200 - 1000 1000 - 800 800 - 600 600 - 400 400 - 200 200 - 0.00 TOTAL AREAS (Km2.) All rights reserved. En la Costa aparece las cuencas Chira y Piura que cruzan el desierto costero como franjas relativamente estrechas, los ríos que llevan su mismo nombre son de corto recorrido y de carácter torrencial, nacen en las faldas accidentales de los Andes y después de discurrir por cauces generalmente estrechos y de pronunciadas pendientes, descargan en el Océano Pacífico. 50.24 0.49 1. La medida de las pendientes de todas las intersecciones se considera como la pendiente de la cuenca. MEDIO Y BAJO PIURA. ------3.05 6.85 3.05 5.05 6.85 5.05 1.80 0.95 0.95 4.00 --4.00 --0.90 0.90 1.20 1.85 1.20 2.10 0.70 0.70 0.90 3.40 0.90 ------------------3.90 --3.90 ------------1.45 4.65 1.45 1.80 2.30 1.80 ------3.95 4.25 3.95 ------1.25 4.70 1.25 --------------1.25 1.25 2.35 --2.35 0.65 2.15 0.65 --1.30 1.30 ------5.40 1.45 1.45 ------------2.65 --2.65 3.10 2.65 2.65 --3.30 3.30 --------2.30 2.30 ------6.75 3.75 3.75 0.70 --0.70 2.50 --2.50 ----0.4 --- ------0.4706 ---- ALTURA (Km.) La materia del presente capítulo, es hacer una evaluación general de la información registrada, que permita elaborar recomendaciones necesarias respecto al funcionamiento de los sistemas actualmente empleados y ver la posibilidad si estos recursos hídricos, permiten la ampliación de su uso en otras áreas 6.- VEGETACION La vegetación natural que se halla en la cuenca del río Piura está en directa relación con la distribución de las aguas y los diferentes ambientes climáticos de la misma. El procedimiento más racional y más preciso aunque más laborioso para calcular la lámina de lluvia media es justamente el que hace uso de las Curvas Isohietas. En cuencas pequeñas el tiempo utilizado en el escurrimiento superficial, constituye una parte apreciable del tiempo total necesario para que el agua llegue a la desembocadura mientras que en cuencas grandes este valor es relativamente poco significativo. Las poblaciones más importantes que están comprendidas en esta Cuenca son: San Andrés de Salitral. Establecimiento de la red pluviométrica La densidad óptima de la red pluviométrica depende evidentemente del fin perseguido y de la heterogeneidad especial de las lluvias de la región estudiada. Observando los valores de F para las sub cuencas de puede deducir que la del río Gallega estará propensa a mayores crecidas en relación a las otras dos. SET. JUN. JUL. POLIGONO DE FRECUENCIAS ALTIMETR LA CUENCA DEL RIO PIURA 3600 0 0,02 0,13 0,57 0,5 0,6 0,82 1,13 1,18 1,45 1,66 2,02 2,15 2,67 2,68 3,47 4,71 7,13 3200 2800 2400 2000 1600 1200 800 400 0 0 6 20 40 60 % DE SUPERFICIE DE LA CUENCA (a=10295,01km²) Los parámetros para graficar el Polígono de Frecuencias de la Cuenca del río Bigote se encuentra en el siguiente cuadro. LX LY 34.00 82.70 104.10 128.30 157.60 161.20 135.90 117.50 90.10 23.00 3.80 37.20 63.00 71.70 77.40 75.70 59.20 50.00 64.80 74.20 79.80 75.30 69.60 59.60 65.40 60.90 58.50 4.10 1034.70 1050.20 2084.90 Los resultados son: SX = N X *D LX = 227 * 400 = 87.8m/Km.  Pendiente del Río Este parámetro fisiográfico proporciona la variación de altura del cauce desde su formación, hasta el punto de entrega de sus aguas, con respecto a la longitud horizontal del mismo. ; sobre todo en lugares que están cerca de las zonas pobladas En relación con los valores de F obtenidas para las 20 cuencas de la costa, este valor esta por debajo del menor de ellos correspondiente a la del río Chancay Lambayeque (F=0.170), lo que nos indica que la cuenca del río Piura es una de las cuencas de la costa con menos probabilidades de estar sujeta a grandes crecidas. 34.24 0.48 1. Donde (L’i) es la distancia a través del río principal entre curvas de nivel sucesivas. SANCHEZ C 1,972 Descarga Anual 555.0 Descarga Acumulada 555.0 Descarga Anual 180.8 Descarga Acumulada 180.8 Descarga Anual 415.3 Descarga Acumulada 415.3 Descarga Anual 642.0 Des Acu 6 1,973 574.0 1,129.0 293.5 474.3 520.5 955.8 645.5 1,2 1,974 103.5 1,232.5 23.4 497.7 18.7 954.5 115.5 1,4 1,975 196^9 1,429.4 146.7 644.4 181.6 1,136.1 243.6 1,6 1,976 324.5 1,753.9 219.3 863.8 342.2 1,478.3 410.5 2,0 1,977 244.0 1,997.9 40.6 904.4 266.2 1,744.5 421.1 2,4 1,973 36.4 2,034.3 38.6 943.0 25.8 1,770.3 154.2 2,6 1,979 41.6 2,075.9 33.6 976.6 33.2 1,803.5 200.2 2,8 1,980 17.2 2,093.1 10.4 937.0 5.3 l,8C8.fí 213.1 3,0 1,981 130.9 2,224.0 77.3 1,064.3 100.3 1,909.1 320.4 3,3 1,932 1,985 31.1 2,255.1 37.1 1,101.4 1,937.4 177.6 3,5 1,984 2,361.2 420.2 2,224.0 5,06.5 1,039.2 297.3 2,140.6 2,437.9 28.3 1,876.4 543.0 3,813.8 4,356.8 4,364.9 627.5 7,9 3,5 1,985 68.3 5,104.8 27.7 2,465.6 62.8 4,419.6 183.4 8,7 1,986 84.6 5,189.4 61.6 2,527.2 73.2 4,492.8 61.9 8,8 5.4.1.2.- CAUDALES MEDIOS MENSUALES Estos son calculados tomando para cada mes la media aritmética de los caudales medios diarias; el método simplificado consiste en admitir que el caudal medio mensual es igual al correspondiente a la media aritmética de las alturas del agua leídas en la escala, esto no seria correcto mas que si la curva de gasto de esta fuera asimilable a una recta en toda la amplitud de las alturas observadas durante el mes. • Cálculo de la pendiente S4: Para determinar esta medida se emplea la siguiente fórmula propuesta por BENSON (1959): S3 = Altura del 85% L − Altura del 10% L 75% L Donde L es el largo total del río. CURVA HIPSOMETRICA DE LA CUENC RIO BIGOTE 4000 3500 3000 2500 2000 1500 1000 500 0 0 20 40 60 80 100 % DE AREA QUE QUEDA SOBRE LA ALTITU (A=650,3Km²) ELEMENTOS PARA GRAFICAR LA CURVA HIPSOMÉTRICA DE LA CUENCA DEL RIO LA GALLEGA ALTITUD AREAS SOBRE % DE % DE (m.s.n.m.) Subcuenca Corral del Medio Comprende a los distritos de Yamango, Chalaco y partes de los distritos de Buenos Aires, Santa Catalina de Mossa y Morropón. construye en primer lugar, uniendo las estaciones (representadas por puntos en plano) mediante rectas formando así triángulos; finalmente se unen los puntas donde se unen las. INTRODUCCIÖN La cuenca del río Piura está ubicada geográficamente cerca de la línea ecuatorial y comprendida entre los 4 o 40´y 5 o 40´de latitud sur y los 79º 30´y 81º 00´ de longitud oeste, abarcando un área de 10.229,64 km 2.El río Piura nace como río ), que recibe el nombre de “Desierto de Sechura”, esta área ha sido favorecida significativamente por la presencia del fenómeno “El Niño”, que ha permitido la regeneración de una alta diversidad vegetal. 9.39 22.16 0.33 0. Reconocer las condiciones que presentan las cuencas en estaciones normales y ver su comportamiento resultante ante venidas de lluvias. (Km.) 0 163.0 2950. La pendiente equivale al promedio de la parte intermedia del cauce (S 4) excluyendo el 15% superior y el 10% inferior de su longitud total. MAY. 1.- ÁREA Y PERIMETRO DE LA CUENCA Y SUB-CUENCAS. Desierto Super Arido Premontano Tropical (ds - PT) 8. mediatrices formando así cada polígono que rodea una estación. Cuando la divisoria aumenta de altitud, debe cortar a las curvas de nivel por su parte convexa. 0 332.5 13706.1 360.0 7159.1 2548. de donde inicia su curso con una dirección Este-Oeste hasta la localidad de Mamayaco, para continuar con rumbo Nor-Oeste hasta Tambo Grande, luego continua con su recorrido irregular hacia el Este hasta la hacienda Olivares, continuando con rumbo Sur-Oeste pasando por la ciudad de Piura hasta la localidad de la Arena para finalmente enrumbar con dirección Sur-Este hasta desembocar en la laguna San Ramón. PALTASHACO LA GALLEGA 05º06”44” 79º53”20” 540.00 1972-1986 BARRIOS BIGOTE 05º17”00” 79º41”44” 298.00 1972-1986 TEODULO PEÑA CORRAL DEL MEDIO 05º11”06” 79º53”26” 193.00 1972-1986 SAN PEDRO CHARANAL 05º04”00” 80º00”30” 254.00 1972-1986 CUADRO Nº 02 1º parte ESTACIONES HIDROMÉTRICAS DE LA CUENCA DEL RÍO PIURA. La velocidad de viento ha sido medida solo a través de estaciones situadas por debajo de los 230 m.s.n.m., y se observa que varía entre 1.6 m ∕ s en la parte alta de la zona y 8.0 m ∕ s en la parte baja (12 m.s.n.m.). durante el mes de Abril en la estación de Tambo grande (Río Piura). Las curvas hipsométricas de la cuenca y sub cuencas se pueden apreciar en los gráficos Nº 3, 4, 5 y 6. Por esta razón; se ha determinado utilizar una serie de técnicas de análisis de las crecidas y precipitaciones, para el mejor aprovechamiento de los recursos hídricos. Desde que el principal significado de las variaciones en la pendiente es el efecto que tiene el recorrido del agua, el método de medición de la pendiente más útil, es el de la pendiente uniforme que equivaldría al mismo tiempo de recorrido actual del cauce, la pendiente uniforme equivalente indicada puede obtenerse dividiendo la longitud del cauce entre un número determinado de tramos y calculando:    ∑ L' i S3 =  3  L' i 2  1  ( ∆h ) 2        2 Donde Li’ y ▲h son la longitud y diferencia de altitud de cualquier tramo. 3. Para realizar el análisis del régimen de los caudales del río Piura cuenta con una información actualizada correspondiente a 9 estaciones, de los cuales 4 pertenecen al río Piura y el resto a los afluentes principales como puede se puede apreciar en el CUADRO N° 1 . Este método el igual que el subsiguiente consideran la posibilidad que las precipitaciones varíen de una estación a otra forma importante y también que la distribución de las estaciones este lejos de ser-uniforme; así, se hace indispensable "pondear" las observaciones efectuadas en cada estación para obtener una media más correcta.. El Polígono se. CUADRO Nº 04 FACTOR DE FORMA (F) CUENCA PIURA BIGOTE LA GALLEGA A (Km2.) N = Total de intersecciones con pendiente cero. Cuando la divisoria va disminuyendo de altitud, debe cortar a las curvas de nivel en su parte cóncava. La pendiente media es el desnivel entre los extremos partido por el ancho medio (d); así, la pendiente media de la cuenca será: S= ∑( ∆h * L') A Donde: S = Índice de pendiente h = Intervalo entre curva de nivel L’= Promedio de las longitudes entre dos curvas de nivel sucesivas A = Área de la cuenca 1.- INDICE DE PENDIENTE DE LA CUENCA DEL RIO PIURA Curva de nivel ▲h (m) 0 200 Li, Lj (Km.) La ciudad de Piura es una ciudad ubicada en Perú en la provincia que lleva el mismo nombre, esta pequeña ciudad conocida como la la "Ciudad de la Hospitalidad" pues sus habitantes se caracterizan por poseer una gran amabilidad. El parámetro Zi es igual al promedio de elevación sobre el punto de desagüe para cada extensión de largo. Evaluar los recursos hídricos indispensables para ayudar a solucionar problemas de tipo energético. CARACTERISTICAS DEL RIO PIURA El ro es el elemento receptor de todas las aguas que discurren una cuenca, y por lo tanto, el conocimiento de las caractersticas como el perfil longitudinal, pendiente, longitud y orden de los ros 2ramificacin9, nos va a determinar la posibilidad de su aprovechamiento a nivel de recursos hidroenergticos, y tambin a . 1986 ∕ 1987 DESCRIPCIÓN RESERVORIO AL 01-01-87 INICIO MES ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO 589.6 428.0 335.3 484.4 551.3 526.1 505.1 (1) 90.6 680.2 154.7 582.7 398.6 733.9 291.1 775.5 164.9 716.2 113.5 639.6 100.0 605.1 (1) (2) 151.2 101.0 136.8 110.6 134.5 115.0 125.8 98.4 106.7 83.4 67.9 66.6 32.4 21.1 252.2 247.4 249.5 249.5 190.1 134.5 53.5 428.0 335.3 484.4 484.4 551.3 526.1 551.6 APORTES: PRONOSTICO DE DISPONIBILIDAD TOTAL DISPONIBLE ENTREGAS: AL DISTRITO RIEGO CHIRA AL DISTRIRO RIEGO M. Y B. PIURA TOTAL DEMANDA RESERVORIO FIN DE MES SUPERAVI DEFICIT (1) (2) (3) FUENTE DGASI. Alturas Parciales (Km.) AÑOS DE REGISTRO ARRENDAMIENTO PIRCAS HAUR HUAR PASAPAMPA TULUCE CHALACO PIRGA SAPILLICA FRIAS HUARMACA STO DOMINGO CANCHAQUE HUANCABAMBA PALTASHACO CUADRO Nº 02 PLU PLU PLU PLU PLU PLU PLU PLU PLU CO PLU PLU CP PLU 04º50” 04º59” 05º06” 05º07” 05º29” 05º02” 05º40” 04º47” 04º56” 05º34” 05º02” 05º23” 05º14” 05º06” 79º54” 79º48” 79º39” 79º35” 79º22” 79º47” 79º36” 79º59” 79º57” 79º31” 79º52” 79º37” 79º27” 79º53” 3 010 3 300 3 200 2 410 2 350 2 250 1 510 1 446 1 700 2 100 1 475 1 200 1 552 900 1971-1986 1973-1986 1964-1986 1964-1986 1964-1986 1964-1986 1973-1982 1965-1986 1964-1986 1964-1986 1964-1986 1964-1986 1964-1986 1971-1986 CUENCA A QUE PERTENECE CADA ESTACION CHIRA CHIRA PIURA PIURA HUANCABAMBA PIURA PIURA CHIRA PIURA PIURA PIURA PIURA HUANCABAMBA PIURA 2º parte ESTACIONES HIDROMÉTRICAS DE LA CUENCA DEL RÍO PIURA. (Km.) SX =Pendiente de la cuenca en la dirección x. SY =Pendiente de la cuenca en la dirección y. Horton considera que la pendiente media de la cuenca puede determinarse como: Sc = N * D * Secθ L Donde: N = NX + NY L = LX + LY θ = Angulo entre las líneas de la malla y las curvas de nivel. CUENCA PIURA IP (m/Km.) LA ALTITUD ALTITUD AREA 0 678,60 0,00 100.00 200 598,86 5,56 88,25 400 519,13 11,11 76,50 800 419,04 22,22 61,75 1200 305,37 33,33 45.00 1600 227,33 44,44 33,50 2000 144,20 55,56 21,25 2400 67,86 66,67 10.00 2800 27,14 77,78 4.00 3200 6,79 88,89 1.00 3600 0,00 100,00 0.00 CURVA HIPSOMETRICA DE LA CUENC RIO LA GALLEGA ALTITUD (m.s.n.m.) Durante El Niño 1982- 1983 se registraron precipitaciones de 1000 a 2000 mm en la cuenca Baja y Media del río Piura y río Chira, mientras que en el Alto Piura de 3000 a 4000 mm; en la Región Andina las precipitaciones tuvieron una intensidad de 1000 a 3000 mm. 3. ABR. en la divisoria con la cuenca del Río Huancabamba, y desciende con dirección noroeste atravesando parte de la provincia de Huancabamba y la provincia de Morropón hasta llegar a la localidad de Tambogrande, donde cambia de dirección hacia el oeste y luego hacia el sur, atravesando las provincias de Piura y Sechura en dirección a las lagunas Ramón y las Salinas. El concepto de cuenca vertiente topográfica es válida si se considera que el suelo es totalmente impermeable, ya que si la corriente de agua es alimentada por circulaciones subterráneas provenientes de cuencas vecinas (terrenos característicos, regiones llanas que tienen fuerte espesor de sedimentos permeables que descansan sobre un lecho rocoso de topografía diferente a la de la superficie), entonces esta cuenca será menos extensa que la real. Estas zonas de vida son: 1. Según los resultados obtenidos para la cuenca del río Piura y sub cadenas que se muestran en el cuadro Nº 03 vemos por ejemplo que el Kc para el río Piura arroja un valor igual a 1.64, lo cual nos indica que la cuenca es alargada y por tanto tendrá un tiempo de concentración mayor, consecuentemente tendrá relativamente pocas probabilidades de sufrir inundaciones, salvo el caso de eventos extraordinarios como lo sucedido en los años 1972 y 1983 los cuales fueron como consecuencia del Fenómeno del Niño. Río Bayano.Es un río que está ubicado específicamente en el distrito de Chepo y la comarca indígena de Madungandí, al este de Panamá.. Características físico-geográficas. Descansa en la hipótesis de que la “lluvia local” observada en una estación es representativa de las precipitadas en una zona más o menos extensa según la densidad de la red pluviométrica en torno a la estación. la dirección predominante es SW y SE. 4. Es bueno hacer figurar en el mismo gráfico las curvas de máxima y mínimas observadas. En la zona plana existe una gran formación vegetal dominada por el algarrobal del género(Prosopis sp. --2.10 2.10 --4.25 4.25 1.60 1.40 1.40 3.50 --3.50 ------------------3.90 --3.90 6.40 --6.40 4.20 4.95 4.20 4.30 2.35 2.35 ------1.00 3.25 1.00 --1.50 1.50 2.80 1.25 1.25 1.00 3.00 1.00 1.70 4.30 1.70 4.20 --4.20 --------------------------1.90 1.90 --3.60 3.60 --2.00 2.00 --------1.20 1.20 ------1.15 6.20 1.15 ------------3.30 --3.30 --1.90 1.90 ------1.53 --1.53 --------5.30 5.30 6.45 --6.45 ------------- 0.4 0.4 --- 0.1860 0.1429 ---- ALTURA (Km.) 48.24 0.43 1. La temperatura media anual de la cuenca es de 24ºC en la zona baja y media y de 13ºC en la parte alta. ANÁLISIS DE CONSISTENCIA DE LA INFORMACIÓN RELATIVA A CAUDALES. ----------2.00 2.05 1.25 1.05 1.05 4.00 --1.50 ----2.20 2.30 ----1.70 ----1.20 --1.95 --0.45 ------- DISTANCIA ALTURA MINIMA (Km.) Esto es indispensable para la elaboración, ejecución y puesta en marcha de los planes de desarrollo. (Km.) El Perú, es un país que posee relativamente escasos recursos hídricos, debido principalmente a su desigual disponibilidad en las diferentes épocas del año. 03 Zaña 2324.0 0 693.80 116.2 0 240.0 0 143.2 0 356.4 0 322.3 0 210.0 0 150.3 0 162.3 0 212.4 0 246.2 0 322.2 0 281.4 0 203.3 2 178.2 5 243.6 2 262.4 0 413.1 0 272.3 0 19.2 7 19.6 5 13.0 9 20.9 7 37.9 1 20.6 3 15.0 6 32.7 5 19.7 1 21.5 4 30.9 9 29.1 6 22.7 2 16.6 8 28.5 8 22.0 8 34.1 5 28.9 7 Nº CUENCA 04 Jequetepeque 3573.3 0 05 Chicaza 3878.0 0 06 Moche 1801.2 0 07 Virú 904.00 08 Nepeña 09 Casma 10 Huarmey 11 Pativilca 12 Huaura 13 ChancayHuari 14 Chillon 15 Rimac 16 Mala 17 Cañete 18 San Juan 1375.4 2 1773.6 0 2132.7 0 4135.4 4 2784.4 2 1932.3 0 1222.4 5 2382.0 0 2126.4 2 5706.2 5 3033.6 0 F C 0.4 7 0.1 7 0.2 5 0.2 6 0.3 9 0.2 3 0.2 5 0.7 8 0.2 2 0.2 2 0.2 3 0.3 1 0.2 3 0.2 3 0.3 4 0.2 2 0.2 1 0.2 3 1.1 6 1.3 9 1.5 2 1.6 4 1.4 8 1.3 8 1.3 9 1.2 2 1.4 1 1.4 9 1.4 4 1.3 9 1.3 2 1.4 3 1.4 3 1.5 9 1.5 3 1.3 8 L Lc Km. La pendiente de cada una de las fajas es: S= ∆h D D= ai Li Donde tenemos que: S = Pendiente de la faja ▲h= Diferencia entre las curvas de nivel D = Ancho de la faja a = Área de cada faja L’= Longitud de la curva de nivel. • Río Piura forma un abanico (cono) fluvial de área - 680 km 2 • yacente esta formado por: - formaciones Zapallal y Miramar de cuenca Sechura (Neogeno) FEB. 10732. En el presente trabajo, para el cálculo de los caudales medios mensuales, no se ha considerado lógicamente los registros correspondientes a los mese extraordinarios de los años 1,972 y 1,983, pues de otro modo los resultados no serían aceptables ya que un valor extremo, estadísticamente, traería como consecuencia la variación de la media muy encima por encima de su valor real En los gráficos Nº33, 34, 35 Y 36 se presentan los Histogramas que representan las descargas medias mensuales, solo para las estaciones del río Piura que es el que nos interesa, los mismos que han sido elaborados a partir del mes de Noviembre, esto debido a que se ha tratada de buscar la adaptación a la distribución de tipo gaussiana a partir de la cual se pueden hacer muchas deducciones. I.- INTRODUCCION El conocimiento de la hidrología de superficie de una cuenca es muy importante para el hombre, porque Subcuenca La Gallega Comprende los distritos de Santo Domingo, Santa Catalina de Mossa, parte de Chalaco y Morropón. El río más importante de esta Subcuenca es el río Charanal, que nace en las alturas de Poclus con el nombre de la Quebrada Huaitaco, aguas abajo se denomina río San Jorge. LA ALTITUD ALTITUD AREA 0 499,10 0 100 200 219,60 12,5 44.00 400 107,31 25 21.5 800 61,14 50 12.25 1200 23,71 75 4.75 1600 0,00 100 0 CURVA HIPSOMETRICA DE LA CUENCA RIO SAN FRANCISCO 1800 1600 1400 1200 1000 800 600 400 200 0 ALTITUD (m.s.n.m.) El individual L’i puede ser fácilmente determinado midiendo perfiles del río principal. Enseguida se calculan la frecuencia con que cada valor de descarga se ha repetido, en porcentaje, para lo que se toma como 100 en número de veces que un determinado valor ha sido alcanzado o superado. La divisoria debe cortar ortogonalmente a las curvas de nivel del terreno. POLIGONO DE FRECUENCIAS ALTIME DE LA CUENCA DEL RIO LA GALLE 3600 0 0,25 2800 3,63 6,04 2000 11,52 12,14 11,63 1200 14,37 400 16 12,52 11,33 0 0 5 10 15 % DE SUPERFICIE DE LA CUENCA (A=678,6 Los parámetros para graficar el Polígono de Frecuencias de la Cuenca del río San Francisco se encuentra en el siguiente cuadro. En los PLANOS N°09, 10, 11, 12 se presentan las Isohietas de los meses de mayor precipitación en la cuenca del río Piura, que corresponden a los meses de Enero, Febrero, Marzo y Abril; se puede observar en ellos que el comportamiento de las líneas es similar a las correspondientes Isohietas anuales, pudiéndose identificar como el mes húmedo o de mayor precipitación a Marzo con 88.4 mm (Ver CUADRO N'33) 3- 4- ESTUDIO DEL RÉGIMEN DE LOS CAUDALES El estudio del Régimen de los Caudales o descargas, es dato básico para el conocimiento del comportamiento de un río, facilitando la formulación de proyectos de aprovechamiento diversos. AÑOS DE REGISTRO CUENCA A QUE PERTENECE CADA ESTACION VIRREY PLU 05º28” 79º59” 230 1964-1986 PIURA BIGOTE PLU 05º18” 79º47” 200 1965-1986 PIURA BERNAL PLU 05º27” 80º44” 32 1964-1982 PIURA TEJEDORES PLU 04º45” 80º14” 250 1958-1980 PIURA TABLAZO PLU 04º52” 80º33” 148 1961-1973 PIURA CURBAN CO 04º57” 80º19” 80 1964-1974 PIURA CHUSIS CO 05º31” 80º49” 25 1965-1984 PIURA SAN MIGUEL PLU 05º14” 80º41” 12 1967-1986 PIURA LA ESPERANZA PLU 04º55” 81º04” 12 1972-1986 CHIRA MALLARES PLU 04º51” 80º46” 90 1972-1986 CHIRA MIRAFLORES CP 05º10” 80º37” 30 1971-1986 PIURA CARACTERISTICAS DEL RIO PIURA El río es el elemento receptor de todas las aguas que discurren una cuenca, y por lo tanto, el conocimiento de las características como el perfil longitudinal, pendiente, longitud y orden de los ríos (ramificación), nos va a determinar la posibilidad de su aprovechamiento a nivel de recursos hidroenergéticos, y también a nivel de comparación con respecto al grado de ramificación del curso principal y estimación de la respuesta de la cuenca a las grandes precipitaciones. De esta manera se tendrán tabuladas todas las descargas mensuales, las que luego se numeran comenzando por el 1, para el valor más alto de cada mes, luego 2,3,4,... hasta el último valor, n, número total de años observados. ENE. ÑÁCARA PTE. deben a este fenómeno. Se considera que la pendiente uniforme equivalente del cauce (S 3) indicada en la fórmula es la medida más lógica y simple. Reemplazando los valores obtenidos del cuadro anterior obtendremos: 18.726 SC = 415 −333 = 228.81 m/Km. En primer lugar, el concepto de que la pendiente es igual a la diferencia de altura entre la longitud del cauce (S1) es bastante empleado. Se objeta que esta forma de medir pendiente podría variar considerablemente de un cauce a otro. En la zona intermedia se encuentra el bosque caducifolio, poblado mayormente por especies como el ceibo (Ceiba triquistrandra), el guayacan (Tabebuia guayacan), el charán (Caesalpinea pai pai), el frijolillo (Lonchocorpuscruentus), el bálsamo (Miroxylon sp), el polo polo(Cochlospermun vitifolium) y el porotillo (Phaseolus campestris), entre otros. Su medida correcta está muy lejos de ser tan simple como pudiera parecer a simple vista, y ello se debe a las razones siguientes:  Cualquiera que sea su tipo, el pluviómetro crea una perturbación aerodinámica en sus alrededores, produciéndose torbellinos que pueden aumentar o disminuir la entrada de agua al aparato. El río Piura es muy irregular y caprichoso, por lo que ha recibido el nombre de "Río Loco". El estudio de la ecología permite identificar las diferentes zonas de vida que cubre toda el área de la cuenca en estudio. HIDROLOGIA DE LA CUENCA El conocimiento de la hidrología de superficie, es de mucha importancia para el hombre, pues estudia los ciclos de circulación del agua donde se mueven grandes volúmenes que se deben aprovechar al máximo tratando de mejorar las técnicas para lograrlo. En dicha información se observó que la temperatura media horaria mensual oscila entre 14.2 ºC y 34.6 ºC correspondiendo las mas altas naturalmente a los meses de verano; se observó también que la mínima horaria mensual estacionaria se registró en julio de 1970 y fue de 10.4 ºC, mientras que la máxima horaria mensual estacionaria fue de 36.8 ºC en enero y abril de 1970; ambos datos se observaron a 250 m.s.n.m. ALTITUD DE FRECUENCIA MEDIA Es la altitud de correspondencia al punto de abcisa media (50 % del área) de la curva Hipsométrica; la Altitud de Frecuencia Media de la cuenca del río Piura arroja un valor de 20 m.s.n.m. El río principal nace en las inmediaciones del Cerro Cachiris, tomando el nombre inicial de río de Frías, desemboca en el río Piura cerca de la ciudad de Chulucanas. Correspondiente al mes de Abril, ha sido alcanzado o superado 14 veces en 14 años, o sea que en el 100X de los casos se ha tenido una descarga de 1.2m3:/seg. (3) (4) RESERVA TECNICA = 150 MILLAS m3 PLAN DE CULTIVO SUPERFICIE DE SIEMBRA (HAS) CUADRO A-2 CAMPAÑA AGRÍCOLA REGION AGRARIA DISTRITO DE RIEGO CULTIVOS : : AGO. PAITA 11-a SULLANA 10-b PIURA 11-b SECHURA 12-b LAS LOMAS 10-c CHULUCANAS 11-c LA REDONDA 12-c AYABACA 10-d MORROPON 11-d OLMOS 12-d HUANCABAMBA 11-e POMAHUACA 12-e Levantadas por Instituto Geográfico Nacional Lima- Perú por métodos fotogramétricos de fotografías aéreas. ENE. VIII.- HIDROLOGIA DE LA CUENCA 1.- REGISTROS PLUVIOMÉTRICOS. Matorral Desértico Premontano Tropical (md - PT) Matorral desértico Premontano Tropical (trancisional a monte) 3. 0 MAR. La muestra tomada por el pluviómetro es siempre extraordinariamente pequeña con relación al conjunto de la lluvia que se supone determinar en una zona siempre extensa; es menos representativa cuando la heterogeneidad especial en la zona considerada es importante. 7.- DRENAJE IV.- GEOLOGIA DE LA CUENCA DEL RIO V.- CARACTERISTICAS GEOMORFILOGICAS DE LA CUENCA DELIMITACION DE LA CUENCA La delimitación de la cuenca se hizo con ayuda de las cartas nacionales siguiendo las líneas divisorias de las aguas y teniendo en cuenta las siguientes consideraciones: 1. Sigue su recorrido de sur a norte. Si la cuenca estuviera sujeta a grandes crecidas, la capacidad de los cauces debe ser lo suficiente para captar y circular las aguas de escurrimiento, de lo contrario se producirán desbordes que para evitarlos se deben construir defensas ribereñas como enrocados, muros de contención, etc. La escorrentía constituye por otro lado el elemento menos complicado de todos los integrantes del Ciclo Hidrológico, puesto que es más fácil y viable organizar la estadística de los ríos a través de una red de estaciones de aforo, mediante un control adecuado de los gastos del curso principal y de los afluentes más importantes de este. PIURA. MAY 1744.0 330.0 1414.0 1867.1 367.0 833.0 533.0 134.1 272.0 1093.8 164.8 929.0 2589.6 226.8 552.0 733.0 1077.8 181.3 1093.8 164.8 929.0 2120.7 226.8 552.0 601.0 740.9 181.3 982.9 164.8 818.1 3198.7 220.0 509.0 575.0 1894.7 158.6 1302.5 820.5 482.0 7723.7 641.2 949.6 1138.3 4994.6 513.7 272.0 257.2 257.2 181.3 162.9 162.9 181.3 162.9 162.9 158.9 145.8 145.8 266.0 173.6 2193.2 630.6 1562.6 3596.0 9818.2 5224.2 4594.0 36984.4 4815.7 9515.0 8971.2 13682.5 29597.1 4458.5 12712.4 12500.3 18121.2 9940.0 8181.2 6521.0 9395.1 5086.1 4309.0 38272.6 4505.6 10037.3 9170.5 14559.2 38326.0 5855.5 12330.3 20140.2 17970.2 9921.4 8048.8 6722.0 9913.9 5370.6 4543.3 39970.5 4796.6 11004.5 9619.9 14549.5 39931.2 6078.5 13352.4 20500.3 18.974.0 10576.0 8398.0 6309.5 8156.9 4478.9 3678.0 33708.2 3940.2 9227.1 8012.8 12528.1 35118.3 5378.7 10970.8 18768.8 15796.8 8743.0 7053.8 5630.2 7039.4 4050.0 2989.4 28010.9 3588.2 8186.2 6732.5 9504.0 30003.5 4579.4 9701.5 15722.6 13974.3 7610.8 6363.5 4407.4 4140.3 4027.6 3558.7 4486.0 15329.1 101041.9 110685.9 115099.1 98410.4 83435.5 Con el sistema regulado, estos sub-sectores equivalen a diferentes tomas establecidas en los parciales. Estaciones del Río Piura. 24.12 0.31 0. En cada intersección se mide la mínima distancia entre las curvas a nivel, y la pendiente de ese punto se considera igual a la relación entre la equidistancia de curvas de nivel y la mínima distancia media. Izq. En los siguientes gráficos se muestra la intensidad de las precipitaciones en diferentes momentos. 1,253.70 474.20 888.80 163.69 157.51 8.21 129.78 125,664.81 197,470.29 3,893.18 115,348.46 Piercas 1,340.80 27.80 37,274.24 Sto Domingo 898.60 122.51 110,087.49 Frías Sapillica 1,002.50 598.00 471.51 95.74 472.688.78 57,252.52 Tejedores 146.80 374.74 55,011.83 Tablazo 89.50 514.75 40,070.13 Curvan 233.50 1,399.10 326,689.85 Mallares 40.50 145.16 5,878.98 Miraflores 39.70 1,003.76 39,849.27 San Miguel 34.60 969.79 33,554.73 Bernal Chisis Paltashaco 27.17 23.50 607.50 715.50 439.60 719.62 19,440.14 10, 330.60 437,169.15 Virrey Huarmaca 138.70 874.70 1,074.80 225.45 149,074.76 197,201.12 Pirga 722.30 202.08 203,746.38 La esperanza 21.70 7.21 156.46 Arrendamientos 547.10 12.35 6,756.69 10,295.01 3' 299, 026.28 Promedio 520.7 mm. En este rectángulo las curvas a nivel vienen dadas por rectas paralelas al lado menor y el desagüe de la cuenca que es un punto queda convertido en el lado menor; la figura así obtenida permite observar más objetivamente las características topográficas de la cuenca. 5.4.1.1.- ANÁLISIS DE CONSISTENCIA DE LA INFORMACIÓN Para comprobar la bondad de la información, se realizó al igual que para el estudio de precipitaciones el procesa denominado de "Doble Masa" cuyos resultados según los GRÁFICOS N°30, 31 Y 32 evidencian que los datos pueden ser consideradas coma "consistentes". OCT. NOV. DIC. Se cuentan con 18 estaciones Pluviométricas distribuidas en toda el área de la cuenca en estudio, mas sietes estaciones que pertenecen a las cuencas vecinas pero ubicadas muy cercanamente a la cuenca del río Piura, lo cual nos ayudará en forma importante cuando haya calcular las precipitaciones promedio caídas en las misma. El estudio de la Fisiografía permite determinar las características físicas, geográficas, de forma y de relieve de la cuenca, lo cual es importante conocer porque nos condiciona en gran medida los comportamientos de los elementos del ciclo hidrobiológico; por otro lado, para esto se ha tomado el cuadro correspondiente a los parámetros geomorfológicos de 20 cuencas de la costa peruana, el cual ha sido extraído de la tesis titulada “Determinación de la relación de los Parámetros geomorfológicos con las descargas máximas de las cuencas de la costa peruana”. y solo cuenta con un registro histórico de 15 años. CAMPAÑA AG (MILES M3) AGO. L= 2 1.64 10295.01  1.128   1 + 1 −      1.128  1.64         = 254.60Km. ABR. ; su recorrido comienza de Norte a Sur hasta Pueblo Nuevo para luego tomar la dirección Sur-Oeste hasta su confluencia con el río Piura a la altura de la hacienda Curban. La altitud media de la cuenca del río Piura corresponde al valor de 1800 m.s.n.m. Address: Copyright © 2023 VSIP.INFO. A = Área de la cuenca (Km2.) 26.3 4 13.1 4 29.2 3 36.6 7 20.6 6 14.4 3 11.2 1 22.5 9 23.9 2 31.1 9 23.0 4 17.9 4 16.1 7 20.1 0 22.3 5 43.2 5 29.3 9 40.08 0.55 1. 2.- CLIMA La variación orográfica de esta Cuenca produce gran variación climática, desde el clima frío y seco en las alturas, cálido y seco en las quebradas superiores y medias hasta el cálido y algo húmedo en la planicie costera. La expresión es la siguiente: F= Donde: A L² A = Área. (Ver CUADRO N°07) Si a1, a2, a3,…, an son las áreas parciales de cada polígono y r1, r2, r3,… , rn, las precipitaciones correspondientes, el resultado final será: a1 .r1 + a2 .r2 + a3 .r3 + ... + an .rn a1 + a2 + a3 + .... + an P= Los cálculos aparecen en el cuadro N°31 CUADRO Nº- 30 SSTACTON PRECIPITACIÓN ANUAL ( X ) ( mm) PROMEDIO Huar Huar 1,253.7 Yuluce 1,160.0 Huarraaca 874.7 Pircas 1,340.8 Chalaco 888.8 Arrendamientos 547.1 Pasapampa 767.7 Huancabamba 474.2 Pirga 722.7 Canchaque 800.0 Paltashaco 607.5 Sto Domingo 898.6 Frias 1,002.5 Sapillica 593.0 Curban 233.2 Tablazo 89.5 Tejedores 146.8 San Miguel 34.6 Miraflores 39.7 Bigote 287.0 Virrey 138.7 Hallares 40.5 Bernal 27.2 La Esperanza 21.7 Chusis 23.5 CUADRO Nº 31 B. MÉTODO DEL POLIGONO DE THISSSEM ∑( ri x ai ) ∑ai P= Ri = Precipitación promedio anual de cada estación. Para conseguir esto., se clasifican en orden decreciente las descargas de cada mes independientemente del año en que se hubieran registrado. ESTACION TIPO LATITUD (S) LONGITUD (w) ALTITUD (M.S.N.M.) • Cálculo de la pendiente S3: 2      ∑ L' i   (m/Km.) Abarca unos 206 km, naciendo en la Cordillera de San Blas y desembocando en el Golfo de Panamá.Sus principales afluentes son el Mamoní, Ipetí, Chararé y Majé.Su nombre proviene del negro cimarrón que vivió en . echeandiachilcan echeandiachilcan 01.10.2022 Ciencias Sociales Universidad contestada Características del Río piura 1 Ver respuesta Publicidad . Saliendo de la laguna Lauricocha toma el nombre de río Marañón. El valor de esta factor esta en proporción directa con respecto a la rapidez de respuesta de la cuenca a una precipitación dada, así por ejemplo, según el cuadro Nº 04 se observa que la cuenca del río Piura tiene un factor de forma de 1.26, valor que es relativamente bajo, aun siendo la longitud del cauce desarrollado consecuentemente estará sujeto a bajas crecidas. En el valle superior existen áreas cubiertas mayormente por gramíneas como Ichu, Satipa; y especies propias de ambiente pantanoso como el género Sphagnun y otros. 39.83 0.61 1. ABR. PLANES DE CULTIVO La administración técnica del distrito de Riego Medio Bajo Piura 05; ha formulado el presente Plan de cultivo y riego con la finalidad de que el uso justificado y racional del recurso hídrico, sirvan para el desarrollo de todo este valle agrícola. por sobre cuya altura se encuentra el 6.4 % del área total. Su cauce de 280 km tiene una dirección general de sur a norte, con curvatura desde la quebrada San Francisco hasta la caída de Curumuy . 35.84 0.48 0. 10295 Criterio de Alvord Este criterio analiza la pendiente de la cuenca partiendo al igual que el índice de pendiente, de la pendiente de cada una de las fajas definidas por curvas consecutivas. Aún es posible encontrar pequeñas áreas de bosque de neblina4 donde se pueden encontrar las epifitas como la salvaje (Tillandsia usneoides), las achupallas (Puya sp) y algunas orquídeas. Km. En el caso de la estación de Tambo grande la descarga de 1.2 m3/seg. CAMPAÑA AGRICOLA: 1986 ∕ 1987 FEB. MAR. La cuenca así delimitada corresponde a la definición de CUENCA VERTIENTE TOPOGRÁFICA que puede a veces diferir de la CUENCA VERTIENTE REAL. Características del Río piura Recibe ahora mismo las respuestas que necesitas! 40.40 438.00 118.0 0 53.00 384.00 118.6 0 97.00 97.30 2113.5 4 2021.0 8 893.12 60.00 528.44 42.00 717.15 90.00 876.52 99.00 81.50 1037.0 0 1332.7 4 1042.6 4 912.50 73.25 537.25 83.40 975.80 93.30 1099.3 0 7433.1 2 1333.3 5 133.4 5 94.80 154.8 0 112.4 6 533.40 Dd Lt Km.∕ Km. Si se tiene que a1, a2, a3... + an, son las áreas comprendidas entre las curvas Isohietas r1, r2, r3 ..... + an * rn las precipitaciones correspondientes a cada Isohieta, la precipitación promedio será: a1 ( r0 + r1 ) / 2 + a 2 ( r1 + r2 ) / 2 + a3 ( r2 + r3 ) / 2 + a3 ( r2 + r3 ) / 2 + ... + a n ( rn −1 + rn ) / 2 A1 + A2 + A3 + .... + An P= CUADRO Nº 32 MÉTODO DE LAS LINEAS ISOHIETAS ALTURA. La escala correspondiente es 1:100 000. Km. Los resultados son: CUENCA LC S1 PIURA 7,072.85 137.40 BIGOTE 631.50 388.41 LA GALLEGA 618.50 364.57 SAN FRANCISCO 127.50 102.18 Mientras este criterio indudablemente da un buen promedio de medida en pendiente, es considerable la labor que esta involucra en medir la longitud de todas las curvas de nivel consideradas. Desierto Super Arido Tropical (ds - T) 9. Si la intersección se encuentra entre dos curvas de nivel de la misma cota, la pendiente se considera nula y ese punto no se tiene en cuenta para el cálculo de la media. Las aguas de esta subcuenca desembocan al río aguas abajo de Salitral; en su ámbito se encuentran las quebradas secas Jaguay, Mangamanga y Tabernas, las cuales desembocan directamente al río Piura, formando conos aluviales agrícolas que son regados con aguas del río Bigote. Es importante la determinación de la curva hipsométrica y del polígono de frecuencia de altitudes porque nos permite tipificar las características altitudinales de la cuenca en estudio; dichas características son las siguientes: AREAS ENTRE CURVAS DE NIVEL CURVAS DE NIVEL (m.s.n.m.) Además en el presente informe se presentará el estudio fisiográfico de tres sub-cuencas de la cuenca en estudio, que corresponden a la de los ríos Bigote, La Gallega y San Francisco. : : : SET. 0 1650. La Gallega.- Nace en las alturas de Santo Domingo a 3 3230 m.s.n.m. 0 L’= Li + L j 2 432.875 ▲h * L’ 86575 200 865.75 200 400 892.750 178550 817.250 163450 719.250 143850 668.500 133700 589.000 117800 511.800 102360 434.300 86860 382.375 76475 341.750 68350 319.375 63875 280.375 56075 280.875 44175 177.500 35500 146.625 29235 94.500 18900 36.750 7350 919.75 200 600 714.75 200 800 723.75 200 1000 613.25 200 1200 564.75 200 1400 458.85 200 1600 409.75 200 1800 355.00 200 2000 328.50 200 2200 310.25 200 2400 250.50 200 2600 191.25 200 2800 163.75 200 3000 129.50 200 3200 59.50 200 3400 14.00 Totales 7072.85 IP = 1413170 1413170 = 137.27m/Km. Por ejemplo, para la prospección de los módulos pluviométricos medios en una cuenca de llanura extensa pero homogénea, el geógrafo podrá contentarse con una red bastante floja; en cambio el ingeniero que desee estudiar las crecidas consecutivas de costos pero intensos aguaceros en región montañosa, se verá en la obligación de multiplicar el número de pluviómetros. ai = Área de influencia de cada estación. 5.4.1.4.- CURVAS REPRESENTATIVAS Mucha información acerca del comportamiento de los ríos, puede ponerse o analizarse gráficamente, con lo que se facilita su compresión y puede planearse su utilización. Subcuenca Charanal–Las Damas Comprende a los distritos de Frías, Santo Domingo y Chulucanas. 24.28 0.49 0. Se puede considerar esta curva como una especie de perfil de la cuenca, y su pendiente media en m ∕ Km. II.- IMPORTANCIA La importancia del presente estudio se basa en los siguientes puntos: 1. Cada cara de este poliedro tendría una cierta pendiente; esta pendiente ponderada por el área correspondiente nos dará un valor que consideramos como índice de pendiente. REGISTROS DE TEMPERATURA. Obtenemos la pendiente media de la cuenca, calculando la pendiente media de cada una de las bandas. 1.— Curva de Variación Mensual El hablar de caudales medios mensuales o anuales conduciría a una regularización artificial del régimen, por compensación de años secos y húmedos; de esto pueden resultar graves errores -por ejemplo al calcular la capacidad que e debe dar a los reservorios estacionales (cuando se trate de regularizar al curso de un río o de calcular la energía que debe producir una central hidro-eléctrica); por eso es necesario tener una idea de los caudales correspondientes a los años extremos (húmedos y secos) los cuales son extraídos a partir de los caudales totales anuales. El régimen de los caudales refleja la conducta general y distribución estacional de las aguas del río; por otra parte, su clasificación en orden de magnitud, determina las probabilidades de tener un determinado caudal durante un determinado periodo de tiempo. 82.36 0.57 1. 0 24.8 45.2 1,985 5.7 2.3 5.2 1,986 7.1 3.1 6.1 ÑÁCARA En el CUADRO N°35 se pueden apreciar los módulos anuales respectivos para cada una de las estaciones instaladas en el río Pira. Nace en la confluencia de los ríos Sacramento Sur y Sacramento Medio ( South Fork y Middle Fork Sacramento River ), cerca del monte . Se ve en ellos que las líneas resultantes se asemejan en conjunto mucho a una recta, y los posibles quiebras que se observan que significarían ciertas inconsistencia corresponden justamente a los años con valares extremos como lo fueron 1,972 y 1,983; en estos años se presentaron caudales extraordinarios como consecuencia de las precipitaciones también extraordinarias que corresponden al mismos años. ; tiene un recorrido de Este a Oeste, hasta su confluencia con el río Piura a la altura de Mangamanguilla. 520000 540000 560000 580000 600000 620000 640000 660000 680000 9480000 9480000 500000 # # # # # # # # # # # # # # SUBCUENCA SAN FRANCISCO # # # # # # # # # # # # N # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # ### # # # # # # # # O # # # RA TE OS C DE # # # ## # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # CHAL ACO # MOR R OPON YA MAN GO # # # # # # SAN JU AN DE BIGOTE SALIT RA L CANCHAQUE # # # # # # # # # ## # # # # ## # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # 9380000 # # # # HUARMAC A # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # SEC HURA # # # # # # ## # # ## SAN MIGUEL D E EL FA IQ UE VALLE BAJO PIURA # LAL AQ UIZ BUENOS A IRES # # # # # SA NTO DOMIN GO # # # # CURA MO RI LA A REN A # # # # LA MATA NZA # # # # # # # # # # # # # # # # # # # # # # # # # ### # # # # ## # # # # # # # # # ## # # # # # ## ## # # # ## # # # # # # # # # # # ## # # ## # # ## # # # # # # # # ## ## # # # # # # # # # # # # # # # # # # ###### # # # # ## # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # ## # # # # ## # # # # # # # # # ## ## ### # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # ## # # # # # ## # # # # # # # ## # ## # # # # ## # ## # # # # # # # # # # # # # # ## # # # ## # # # # # # # ## # # # # # # ## # # ## # # ## # # # # # # # # ### # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # ### # # # # # # ## ## # ## # # # ## # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # ## # # # # # ## # # # # # # # # # ## # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # ### # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ZONA MARINO COSTERA BAHIA DE SECHURA # PROGRAMA DE FORTALECIMIENTO DE CAPACIDADES NACIONALES PARA MANEJAR EL IMPACTO DEL CAMBIO CLIMATICO Y CONTAMINACION DEL AIRE - PROCLIM PATRONES DE RIESGOS DE DESASTRE ASOCIADOS CON LOS EFECTOS LOCALES DEL CAMBIO CLIMATICO GLOBAL EN LA REGION PIURA: PROCESOS SOCIALES, VULNERABILIDAD Y ADAPTACION 9360000 SECHU RA O CIFIC PA DE HIA BA LA O AN CE O # # # # # # # SA NTA C ATAL INA DE MOSSA ## # # # # # ## # # # # # # # # # # # # # # # # # ## 9400000 O IN R A M # # # # # ## # ## # # ## # # ## # ## ## # # # # # # # # # # # # # # # # # # # # # ## # # # # ## CHUL UC ANAS # # EL TA LLA N # # # BELL AVISTA DE L A UNION # # BERNAL RINCONADA D E LLICUA R # CR IST O NO S VA LGA # ### # VICE# # # CA TACA OS LA U NION A N 9360000 # # # # # # # # # # # PIU RA # CA STILL A # # ## # # # # # # ### # # # # # # ## # # # # # Z # # # # # # # # # # ## # ## ## ## # # # # # # # # ## # ### # # # # # ## ## ## # # # # # # # # # # # ## ## # # # # ## # ## # # # # # # # # # # # # ## # # # # # # # ## ## # # # # # # # # # # # # # ## # ## # ## # ## # ## # # # # ### ## # # # # # # # # # # # # # # ## # ## # # # ## # # # # ## # # # # # # # # # # # # # # # # ## # ## # # # # ## # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # FRIA S 9420000 9420000 # # # # # # # ## # ## # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # SUBCUENCA YAPATERA # # # # # # # # #### # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # # ## # # # # # 9440000 9440000 # # # # # TAMB O GRANDE # # # 9400000 # # # # # # # # # # # # # # # # # # 9380000 # # # ## # # # # ## # # # # # # # # # ## # # # # # # ## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # # # # S # # # # # # # # AREAS DE INTERES DE LA CUENCA DEL RIO PIURA # # 9340000 ING. La expresión que define este criterio es la siguiente: K SC = M −N Donde: M = Total de intersecciones dentro de la cuenca. NY=Número total de intersecciones y tangencias en las líneas de las malla en la dirección y, con las curvas de nivel. POLIGONO DE FRECUENCIAS ALTIME DE LA CUENCA DEL RIO BIGOT 3600 0 2,24 2800 7,7 8,37 2000 10,55 7,64 1200 10,95 13,88 400 1 0 4,63 0 5 10 15 % DE SUPERFICIE DE LA CUENCA (A=650,3 Los parámetros para graficar el Polígono de Frecuencias de la Cuenca del río la Gallega se encuentra en el siguiente cuadro. 0 1097.0 725.0 183.5 80.0 47.5 27.0 10260.0 2900.0 1700.0 SORGO TOTAL 1430.5 498. sobre el cual se calcula la altura de precipitaciones sea más corto, será mayor la dispersión de las observaciones en torno t la media; además, la curva de distribución de las frecuencias se hará cada vez más asimétrica. El lector debe conocer algunas características hidrológicas y geomorfológicas que el río Piura presenta, que lo hacen muy particular respecto a otros ríos y que sirven para entender estos procesos en periodos de presencia del Fenómeno El Niño. B. Ríos de la Cuenca del Amazonas:.
Taller De Narrativa Ulima, Situaciones Significativas De Matemática Secundaria Pdf, Trabajo De Chofer En Brasil, En La Revisión Del Texto Expositivo Se Debe Considerar, Sedentarismo En Estudiantes De Medicina, Recomendaciones Para Seguir Estudiando, Casa De La Literatura Peruana, Ruc Ipress De Atención Sanna, Practicas Profesionales En Administración, Fluoruro De Litio Estructura De Lewis, Rof Del Ministerio Público 2018,